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Abstract: A fast and efficient algorithm called HGEM 

(Histogram-based Gaussian Estimation Method) based on an FPGA 

(Field Programmable Gate Array) is developed to automatically 

determine a threshold value for a Sobel edge detector. In comparison 

with Otsu’s method based on a discriminant criterion, the proposed 

method is more efficient in computing performance. The proposed 

method is also simple to be implemented on the FPGA since it avoids 

the repetitious iterations and complex arithmetic operations in Otsu’s 

thresholding procedures. The relative error (RE) of HGEM to Otsu’s 

method is utilized to measure the closeness of the thresholds 

obtained by the two methods. The relative error is less than 1.50% for 

all the test images, indicating that the proposed method has the 

approximately same accuracy as that of Otsu’s method. Timing 

simulations show that the FPGA circuits can run at a speed of up to 

193.9 MHz, which is equivalent to a theoretical frame rate of 1,479 

frame/s for a gray-level image of 256×256. This result confirms that 

the proposed hardware architecture can achieve the requirements for 

a real-time image processing system. 

 
Keywords: Otsu’s method; binary thresholding; image 

segmentation; field programmable gate array (FPGA).  

 

1. Introduction 

Automatic thresholding is a very straightforward and effective 

technique used in the fields of image processing, pattern 

recognition and computer vision. However, it requires an 

adequate threshold value to extract objects of interest from 

their background, since objects in an image have their own 

distinct gray-level distributions. Thresholding methods are 

widely used in many application domains, such as human 

action recognition [1], optical character recognition (OCR) 

[2],[3], automatic defect inspection [4],[5], video change 

detection [6]-[8], moving object segmentation [9]-[12], and 

medical image diagnoses [13],[14]. As a fundamental task for 

image preprocessing, many researchers pay much attention to 

the method of how to determine appropriate thresholds. 

These applications demand real-time performance and 

hardware implementation, especially for an FPGA, is essential 

to increase the computational efficiency of thresholding 

procedures. Hence, the choice of a thresholding method for 

implementation on an FPGA board is important. In binary 

thresholding for image segmentation, Otsu’s method [15] is a 

very popular global automatic thresholding technique; it 

selects an optimum threshold by maximizing the 

between-class variance in a gray-level image. However, the 

basic Otsu thresholding computations involve repetitious 

iterations of the zero- and first-order cumulative moments of a 

gray-level histogram, which requires a great number of 

complex arithmetic operations such as multiplications and 

divisions. The heavy computational resource makes Otsu’s 

method unsuitable for a high-speed low-cost implementation 

in FPGA. 

Otsu’s method is simple to be implemented in software, but 

it is less efficient when implemented in FPGA circuits. Tian et 

al. [16] introduced a binary logarithmic conversion unit (LCU) 

to implement Otsu’s method by eliminating the complex 

divisions and multiplications in the computations of 

between-class variances. The hardware was synthesized with 

Synplicity Synplify Pro 7.0.3 targeted at the Xilinx Virtex 

XCV800 HQ240-4 FPGA device. The results for 

implementations on the FPGA platform showed that their 

method is 2.75 times faster because it occupies only 1/6
th

 of 

the FPGA slices required by a direct implementation. The 

introduction of an LCU can avoid the complex computations 

of divisions and multiplications, but repetitious computations 

are still required to search for the maximum between-class 

variance to determine an optimum threshold. 

To eliminate both the repetition and complex arithmetic 

operations in the computations of between-class variance, we 

present a fast algorithm called HGEM (Histogram-based 

Gaussian Estimation Method), which is based on the Gaussian 

distributions of a histogram to determine an optimal threshold 

for gray-level images. The proposed method is relatively 

simple and efficient for implementation on an FPGA platform 

when compared to the basic Otsu thresholding procedures. We 

also develop a Sobel-based edge detector in the FPGA circuits 

as a target platform for the HGEM. To detect the presence of 

an edge pixel in an image, an appropriate threshold value is 

required to compare it with the magnitude of the Sobel 

mailto:daweimailbox@gmail.com


International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)       178  
Volume 1, Issue 4, December 2010 

 

gradient. Therefore, HGEM can be used to choose the 

optimum threshold for the Sobel-based edge detector. 

Most algorithms for edge detection need to perform a 

convolution with an image in the spatial domain using a 

specific mask like a Sobel operator. Benkrid et al. [17] 

proposed a general framework which is built on a library of 

hardware skeletons for FPGA-based image processing. Two 

methods, online arithmetic and 2’s complement LSBF (least 

significant bit first) with bit serial transfer, were presented to 

implement the Sobel-based edge detector on an FPGA board. 

Time simulations revealed that for a 256 ×256 gray-level 

image, the Sobel-based edge detector can run at a speed of 75 

MHz, which leads to theoretical frame rates of 88 and 104 

frame/s for online arithmetic and 2’s complement LSBF 

methods, respectively. However, [17] did not explicitly 

describe the determination of the threshold required to 

establish the presence of an edge pixel. Other studies [18]-[20] 

have also omitted this description. 

Rosas et al. [18] utilized a SIMD (single instruction 

multiple data) architecture based on an FPGA which was 

connected to two external RAMs modules. One of the RAMs 

modules was used to store the image captured by a CMOS 

sensor, and the other was used to store the image processed by 

the FPGA. In our study, instead of using external RAMs 

modules, the proposed hardware architecture uses built-in 

dual-port block RAMs to implement the HGEM algorithm 

targeted at a Sobel-based edge detector because it can store 

great amounts of data and access it quickly. 

To evaluate the accuracy of the optimum threshold obtained 

for an image, Sezgin and Sankur [21] employed the following 

five methods to assess 40 existing thresholding algorithms: 

misclassification error (ME), edge mismatch (EMM), region 

non-uniformity (NU), relative foreground area error (RAE), 

and modified Hausdorff distance (MHD). In this paper, the 

method of ME is used to evaluate the accuracy of HGEM and 

the Otsu method. 

This paper presents an efficient framework for threshold 

determination based on the FPGA using the HGEM algorithm. 

The rest of this paper is organized as follows: Section 2 briefly 

describes the proposed system architecture. Section 3 then 

gives a detailed description of the proposed HGEM method. 

The experimental results are discussed in Section 4, and 

Section 5 contains the concluding remarks of this work. 

2. System Architecture 

The proposed architecture for an FPGA-based image 

processing system is shown in Fig. 1. The hardware was 

implemented using a Xilinx ISE 8.1i IDE (Integrated 

Development Environment) tool on the ML401 Xilinx 

Virtex-4 (XC4VLX25) FPGA based board. This system 

consists of the following primary components: a data 

transmission unit, an image segmentation unit, a moving 

window generator, a three-stage Sobel pipeline unit, and a 

threshold estimation unit. The data transmission unit is 

designed to transfer original image pixels from a PC to the 

FPGA through a UART (universal asynchronous receiver and 

transmitter) module. To perform convolution, an input image 

with m×n pixels has to be convoluted with a p×q mask. The 

moving window generator is used to sequentially extract a p×

q window of neighboring pixels from the input image. The 

three-stage Sobel pipeline unit is adopted to carry out the 

convolution of the Sobel gradient operator with the window of 

image pixels acquired by the moving window generator. The 

threshold estimation unit is an implementation of the proposed 

HGEM algorithm, which performs histogram statistics, 

threshold search, and threshold determination. The image 

segmentation unit is to binarize input image by a threshold that 

is determine by the threshold estimation unit.  

A threshold value is required for segmenting a gray-level 

image. An algorithm called HGEM is proposed to replace the 

Otsu’s method based on the feasibility of implementation on 

the FPGA device. The proposed algorithm HGEM, as 

implemented in the threshold estimation unit, involves the 

computing procedures including histogram statistics, 

threshold search, and threshold determination. As illustrated in 

Fig. 1, when the convolution operation is complete, the 

processed image (or output image) is stored in block RAMs 

and then sent back to the PC through the UART module for 

further verification. The details of the data transmission unit, 

the moving window generator, and the three-stage Sobel 

pipeline unit are described in the following sections. 

 

  
Figure 1. System architecture for threshold determination 

targeted at the Sobel edge detector 

2.1  Data transmission unit 

To verify the correctness of the proposed architecture shown 

in Fig.1, the output image stored in block RAMs, which can be 

transmitted to a PC by the UART module, is compared with 

that calculated by software. The architecture of data 

transmission unit is shown in Fig. 2. This unit primarily serves 

the following two functions (1) to transmit the original image 

from a PC to the FPGA, and (2) to send back the output image 

from the FPGA to the PC. 

The byte data of the image is sent by a PC through the 

UART pin RXD using serial transmission to the UART_Rx 

module on the FPGA, as shown in Fig. 2. When the UART_Rx 

module has completely received one byte of image data, it 
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sends the RXD_data[7:0] and RXD_ready signals. 

RXD_ready is used to trigger the address controller to address 

the memory locations of block RAMs A to store the image data 

that is contained in register RXD_data[7:0]. When the image 

data has been fully transmitted, the address controller stops the 

action of writing the image data into block RAMs A to avoid 

writing error. The image can then be processed in the FPGA 

circuits. 

When the output image has been produced, one can push the 

transmit button with debouncing capability to trigger the 

signal of TXD_start to initiate the transmission of the image 

data from the UART_Tx module to a PC. When one byte of 

the image data has been transmitted, the signal of TXD_busy is 

pulled down to a low level to trigger the address controller to 

acquire the next byte of the image data from block RAMs B 

into register TXD_data[7:0]. Then, the UART_Tx module 

sends the processed image data back to the PC until the total 

image has been completely transmitted. With the aid of this 

unit, the transmission of the original image and the verification 

of the output image can be easily achieved. 

  
Figure 2. Architecture of the data transmission unit  

2.2  Moving window generator 

To compute the Sobel gradient, a 3×3 (i.e., p=q=3) window of 

neighboring pixels extracted from the input image is required 

for convoluting with a Sobel gradient operator. This 

neighborhood window then moves over the whole image until 

an output has been produced for all pixels. Generally, it is not 

practical to store the whole image in RAMs before starting 

computations due to the limited CLBs (Configurable Logic 

Blocks) in FPGA. A better way is to only store the image 

pixels required to perform the current convolution operation. 

Figure 3 shows the architecture of the moving window 

generator which comprises nine flip-flops and two line buffers 

(or FIFOs; first in first out). The line buffers (i.e., FIFO A and 

B) and flip-flops are used to store one row of image data with a 

dimension of n, with each grayscale pixel represented by 8 

bits. Generally, when a p×q convolution mask is applied, 

[(p-1)×n+q]×8 registers are required. Line buffers can be 

implemented using either shift registers or block RAMs in 

FPGA. Generally, when an FPGA has no built-in block 

RAMs, the only way to implement the line buffer is to use shift 

registers [17],[20],[22],[23], which usually consume a large 

number of FPGA gates. For example, when a 3×3 convolution 

window is applied to a 256×256 (i.e., m=n=256) image with 

8-bit pixels, (2×256+3)×8=4,120 flip-flops are required. That 

is about 19% (4,120/21,504*100%) of all the available 

flip-flops in the Virtex-4 (XC4VLX25) FPGA used in this 

case. Furthermore, if the size of the convolution mask or image 

becomes larger, the required gate counts or CLBs of the FPGA 

will increase accordingly. To reduce the consumption of 

FPGA CLBs, [24] utilized block RAMs to implement the line 

buffers. 

This paper also adopts the block RAMs to implement the 

line buffers using a framework similar to that used in [24]. 

Using block RAMs to implement the line buffers not only 

reduces the consumption of FPGA gates, but also lowers the 

required routing of logic elements. Less routing of logic 

elements implies that a higher operation speed of the FPGA 

circuits can be achieved. This is verified by Figs. 4 and 5. 

 

  
Figure 3. Architecture of the moving window generator 

The FPGA gate counts for block RAM-based and shift 

register-based FIFOs under various image sizes are shown in 

Fig. 4. The results show that the required gate count increases 

from 4,000 to 38,000 when the image size grows from 32×32 

to 512×512 pixels for the case of a shift register-based FIFO. 

However, when block RAMs is used, the required gate count 

remains approximately constant at about 2,000 with increasing 

image size. Figure 5 shows the effects of image size on the 

operational speed of the FPGA circuits. Generally, the total 

speed decreases when the image size becomes larger for both 

shift register-based and block RAM-based FIFOs. Sharp 

declines of speed can be observed when the image size 

increases from 128×128 to 512×512. In addition, the average 

speed for a block RAM-based FIFO is much higher than that 

of a shift register-based one. Figs. 4 and 5 show that the 

operational speed can be increased by 15.6% and that the logic 

elements of the FPGA can be reduced by 74.2% when block 

RAMs is used to replace shift registers to implement the FIFOs 

in the moving window generator. 

 

 
Figure 4. Effect of image size on the gates consumed in FPGA 
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Figure 5. Effect of image size on the operational speed of the 

FPGA chip system 

2.3  Three-stage Sobel pipeline unit 

Many methods for edge detection have been implemented with 

convolution masks, and most are derived from the differential 

operators, which measure the rate of change in brightness of an 

image. Generally, a large change in brightness in an image 

over a short spatial distance (typically one pixel) reveals the 

existence of an edge. The most popular convolution mask used 

in edge detection is the Sobel gradient operator, which looks 

for edges in both the horizontal and vertical directions and 

then combines this information into a single metric, as shown 

in Fig. 6. The convolution can be carried out with the Sobel 

gradient operator as follows: 

 

7 8 9 1 2 3( 2 ) ( 2 )xG w w w w w w          (1)  

3 6 9 1 4 72 2yG (w w w ) (w w w )         (2)  

where Gx and Gy are called the “row mask” and the “column 

mask,” respectively. Since both have the same computational 

complexity in performing the convolution operation, this 

paper only implements horizontal edge detection, i.e., Gx, to 

avoid detecting redundant edge information. 

 

  
Figure 6. Sobel masks used to compute gradients Gx and Gy 

 

Figure 7 shows the architecture of the three-stage Sobel 

pipeline unit. In this study, three pipelines are employed to 

improve the performance of the system. First, stage-1 

pipelining deals with the additions and multiplications of the 

image window pixels with the Sobel gradient operator. In this 

stage, four additions and two multiplications are required, 

where multiplication is performed using one shift-left 

operation rather than using a multiplier to save logic elements. 

Stage-2 determines the absolute value for Gx, and stage-3 

outputs an enhanced edge detection image. When synthesizing 

individually, this unit can run at a speed of up to 238.2 MHz. 

  
Figure 7. Architecture of the three-stage Sobel pipeline unit 

3. Threshold selection algorithm 

In an image processing system, the success of image 

segmentation highly depends on the capabilities of the 

thresholding method to determine an optimum threshold. Lee 

et al. [25] adopted the histogram concavity technique to locate 

the optimal threshold value. In their method, the slopes of all 

the line segments are calculated from the starting gray level. 

Then, the background peak, Bp, with the greatest slope can be 

obtained. Similarly, the object peak, Op, can be secured 

starting from the opposite direction. As a result, the optimal 

threshold can be found somewhere between Bp and Op. 

However, this method fails to find the optimal threshold for the 

special case when Bp meets Op due to extremely high 

histogram data in a gray level. 

Some heuristic approaches have been presented to 

determine the optimal threshold. El-Khamy et al. [26] 

proposed a so called “Modified Fuzzy Sobel” method that uses 

a fuzzy reasoning-based algorithm to detect the edges of an 

image. They first divided an image into two fuzzy regions, i.e., 

the Fuzzy Smooth region and the Fuzzy Edge region, and then 

constructed a difference histogram from the input image. The 

four threshold values used to define the boundaries of the 

image fuzzy region were used to build a membership function 

to determine the optimal threshold. 

The methods proposed by [25],[26] are relatively simple to 

implement in software, but they are quite difficult to 

implement in FPGA circuits due to the determination of 

varying slopes for [25], and the calculation of the difference 

histogram for [26]. To achieve much higher accuracy in 

thresholding estimation, a lot of studies [27]-[29] have used 

the entropic thresholding technique to find an optimal 

threshold instead of adopting histogram shape-based methods. 

However, this method needs to calculate the probability 

distributions for the edge and non-edge pixels, making it 

computationally expensive and hard to implement on an 

FPGA. To balance the computational cost and thresholding 

estimation accuracy, the present study proposes a 

histogram-based Gaussian estimation method (HGEM), which 

is not only easily implemented in FPGA circuits, but also 

provides a more reasonable threshold value. 
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3.1  Histogram-based Gaussian estimation method 

(HGEM) 

HGEM is based on the analysis of the gray-level probability 

density function (pdf) for an image[30]. When the histogram is 

modeled as two different Gaussian functions, as shown in Fig. 

8, with means and variances ( 1 , 2
1 ) and ( 2 , 2

2 ), 

respectively, the histogram function becomes: 

 
2 2

1 2

2 2
1 2

( ) ( )

2 21 2

1 2

( )
2 2

z z

P P
p z e e

 

 

 

 
 

    (3) 

and 

 

1 2 1P P                 (4) 

where z denotes gray level values, and 1P  and 2P  are the 

probabilities of occurrence of the two classes of pixels, 

respectively. To find the optimal threshold value T in Fig. 8, 

erroneous classifications, which assign a background pixel to 

the object, and vice versa, should be minimized. 

 

  
Figure 8. Graph of the probability density function (pdf) for 

gray-level distribution 

To greatly reduce the hardware resources required to 

implement HGEM on the FPGA, we performed histogram 

binning by employing wider bin widths. In this study, 16 bin 

groups, which contain 16 gray levels in every group, are 

employed to compute the histogram of gray levels to find the 

optimal threshold. One may argue when the bin width is 

beyond a certain limit, it may destroy the modes or the valleys 

in between. However, if the bin width is constrained within a 

reasonable range, the fine characteristics of the histogram in an 

image can still be retained. Hence, the operation of “histogram 

binning” greatly decreases the computational complexity and 

significantly reduces the required logic elements in the FPGA. 

Figure 9 shows the histogram of various bin groupings, i.e., 

16, 32, 64, and 256, for the test image “Lena”. As shown in this 

figure, the fine characteristics (i.e., valleys in between) of the 

histogram are similar for all the cases even when the widest bin 

(i.e., Lean-16) is used. Consequently, the bin width adopted 

falls into a reasonable range without missing the fine 

characteristics of the histogram. 

 

  
Figure 9. Histogram for various bin groupings for test image 

“Lean” 

To efficiently determine the optimal threshold T shown in Fig. 

8, the 16 bin grouping is employed. The index value (0 to 15) 

of the counter and count value of the histogram are used to 

estimate the Gaussian distribution of an image. Based on the 

index value and count value, the Gaussian distributions can be 

categorized into four types. The details of the HGEM 

algorithm used to determine the optimal threshold are 

described below. 

To complete the histogram of gray levels in an image, the 

counters are first labeled C0 to C15. Hence, when the values of 

gray levels are in the ranges of 0 to 15, 16 to 31, …, and 240 to 

255, they will be grouped into counters C0, C1, …, and C15, 

respectively. Then, the histogram can be modeled as two 

distinct Gaussian functions, divided into the left region, i.e., 

C0 to C7, and the right region, i.e., C8 to C15. Next, we can 

search for the index values, max1_1 and max1_2, 

corresponding to the first two largest count values in the 

direction from C7 to C0 in the left region. Similarly, the index 

values, max2_1 and max2_2, can be obtained from C8 to C15 

in the right region. Typical search results are shown in Fig. 10. 

Two of the four index values, i.e., th1 and th2, can be selected 

based on the type of Gaussian distribution to which the shape 

of the image histogram belongs. Finally, the threshold value T 

can be calculated as 16(th1+th2)/2. The HGEM algorithm for 

finding th1 and th2 is described in the style of the C-language 

for the following four cases. 

 

 (max1_1 7  max 2_1 8)

    1 max1_1  2 max 2_1

if and

th and th

 

 
      (5) 

 

 (max1_1 7  max 2_1 8)

   1 max1_ 2  2 max 2_ 2

if and

th and th

 

 
     (6) 

 

 (max1_1 7  max 2 _1 8)

    1 max1_1 

 ( [max 2 _1] 0  max1_ 2  max1_1)

    2 max 2 _1

    2 1 (minimum)

if and

th

if C or

th

else

th

 



 





  (7) 
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 (max1_1 7  max 2 _1 8)

     2 max 2 _1 

 ( [max1_1] 0  max 2 _ 2  max 2 _1)

    1 max1_1

     1 14 (maximum)

if and

th

if C or

th

else

th

 



 





  (8) 

 

  
Figure 10. Typical distribution of the histogram with 16 

counters 

Equation (5) represents the first type of Gaussian distribution 

shown in Fig. 11(a). If the two largest count values with 

corresponding index values max1_1 and max2_1 are found on 

the opposite side of the histogram, the possible Gaussian 

distributions can be estimated around max1_1 and max2_1, as 

indicated in Fig. 11(a). Hence, the index values th1 and th2 can 

be selected as max1_1 and max2_1, respectively. Equation (6) 

denotes the second type of Gaussian distribution with the first 

two largest count values in the central region, i.e., 

corresponding to index values 7 and 8, as shown in Fig. 11(b) 

and (c). Thus, one possible Gaussian distribution can be 

estimated in the central region, but the other may be in the right 

region, as shown in Fig. 11(b), or in the left region, as shown in 

Fig. 11(c). Consequently, the index values of th1 and th2 

should be determined as max1_2 and max2_2, respectively. 

However, if we choose th1 as max1_1 and th2 as max2_1, the 

threshold value, 16(th1+th2)/2, must be in the central region 

of the histogram, implying that a greatly erroneous 

classification will be raised. 

 

  
(a). First type of Gaussian distribution 

 

 
(b). Second type of Gaussian distribution in situation-1 

 

 

(c). Second type of Gaussian distribution in situation-2 

 

 
(d). Third type of Gaussian distribution in situation-1 

 

 
(e). Third type of Gaussian distribution in situation-2 

 

 
(f). Third type of Gaussian distribution in situation-3 

Figure 11. Analysis of Histogram-based Gaussian Estimation 

Method 

 

The third type of Gaussian distribution is more complicated 

than the first and second ones, as shown in Fig. 11(d)-(f). If the 

first two largest count values are not next to each other in the 

central region, say max1_17 but max2_1=8, one possible 

Gaussian distribution can be modeled around max1_1, as 

indicated in Fig. 11(d)-(f), and then th1 can be evaluated as 

max1_1. However, when the count value C[max2_1] is not 

equal to zero, the other possible Gaussian distribution can be 

estimated around max2_1 (see Fig. 11(d)), and th2 should be 

selected as max2_1. On the other hand, when the count value 

C[max2_1] is zero, no gray levels are larger than 128, as 

shown in Fig. 11(e) and (f). Hence, the other possible Gaussian 

distribution can be modeled around max1_2. As a result, th2 

can be chosen as max2_1 when max1_2>max1_1, or 1 when 

max1_2<max1_1. As can be expected, the third type of 

Gaussian distribution often occurs in a darker image. The 

searching method of th1 and th2 (see Eq. (8)) for the fourth 

type of Gaussian distribution is similar to that of the third type 

but there are no gray levels smaller than 128. This always 

happens in a brighter image. Since the searching method is 

similar to that of the third type, its discussion is omitted here. 

3.2  Comparison of HGEM and Otsu’s method 

Sezgin and Sankur et al. [21] conducted an exhaustive survey 

of 40 selected image thresholding methods. The results 

confirm that the thresholding evaluation rank of 40 NDT 

(nondestructive testing) images according to the overall 

average quality score for Otsu’s method is relatively high, with 

a rank of 6 and an average score of 0.318. This indicates that 

Otsu’s method can provide a reasonable threshold value for 

image segmentation. Here, the threshold estimations of 

HGEM are compared with those of the Otsu method. 

The testing images used in this study consists of natural 

images (see Fig. 12(a)-(c)) and artificial images (see Fig. 
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12(d)-(g)), where Fig. 12(d) and (e) are adopted from [31]. To 

evaluate the accuracy of threshold estimations by HGEM, an 

artificial image is much better than a real-world one. The 

threshold values estimated by HGEM for images Lena and 

Peppers, as shown in Fig. 12(a) and (b), respectively, are very 

close to those evaluated by Otsu’s method. For the image 

Twins, as shown in Fig. 12(c), HGEM provides a more 

reasonable threshold estimation, which is much closer to the 

deeper valley than that of Otsu’s method, implying that HGEM 

can find a satisfactory threshold value even for an image 

histogram with a wide flat valley. A similar result was obtained 

for Fig. 12(d). That is, HGEM provided a threshold value 

exactly in the valley between the two peaks of Gaussian 

distributions. However, the threshold value estimated by 

Otsu’s method was shifted to the edge part of the right 

Gaussian distribution. Furthermore, when three objects appear 

in one image, as shown in Fig. 12(e), an appropriate threshold 

value was obtained by both methods. 

Images with different luminance levels were also examined 

by HGEM to verify the robustness of the threshold estimations. 

Images with low luminance, as shown in Fig. 12(f), and with 

high luminance, as shown in Fig. 12(g), were tested using 

HGEM and Otsu’s method. The results indicate that a 

reasonable threshold value can be obtained using either 

method, even for images with large variations in luminance. 

However, HGEM is computationally efficient; it avoids both 

repetitious iterations and complex arithmetic operations that 

are required to compute the between-class variance when 

using Otsu’s method. 

  
(a). Lena 

 

  
(b). Peppers 

  

  
(c). Twins 

  

  
(d). Two Objects 

  

  
(e). Three Objects 

  

  
(f). Low luminance 

  

  
(g). High luminance 

Figure 12. Testing images for threshold estimation 

 

To visually compare the segmented results obtained by HGEM 

and Otsu’s method, three 256256 test images (i.e., Lena, 

Peppers, and Twins), with each pixel represented by 8 bits, 

were used. The segmented images with their corresponding 

thresholds are shown in Fig. 13. The figure shows that the 

thresholds evaluated by HGEM are very close to those of 

Otsu’s method, indicating that a closely visual perception 

between them can be achieved. 

 

 
Figure 13. Segmented images of binary thresholding for 

HGEM and Otsu’s method 

A comparison of accuracy using the ME method [21] for 

HGEM and Otsu’s method was performed. Gray-level images 

extracted from the CEDAR database of handwritten words 

with 29 test images [32], and from the FVC2000 database of 

fingerprints with 70 test images [33], were employed. Some 

typical samples are shown in Figs. 14 and 15 with the 

corresponding ground-truth images. The ground-truth images 

can be obtained by visually determining the valley of the 

histogram of the test images. The average results of ME for 29 
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test images of the CEDAR database and 70 test images of the 

FVC2000 database were used to evaluate the accuracy of 

bi-level thresholding for the two methods. 

 

  
Figure 14. Typical images in the CEDAR database of 

handwritten words 

  

  
Figure 15. Typical images in the FVC2000 database of 

fingerprints  

 

The index of ME is quite useful for quantifying the percentage 

of background pixels wrongly assigned to the foreground, and 

vice versa. For bi-level segmentation, ME can be simply 

represented as 

 

1
O T O T

O O

B B F F
ME

B F

  
 


       (9) 

where BO and FO denote the background and foreground of the 

original (ground-truth) image, respectively, and BT and FT 

denote the background and foreground pixels in the test image, 

respectively. Note that the value of ME varies from 0 for a 

totally well classified image to 1 for a completely wrongly 

binarized image. 

Table 1 shows the results of ME of bi-level thresholds for 

the two methods using the test images of handwritten words 

taken from CEDAR and fingerprints taken from FVC2000. As 

indicated in Table 1, the values of ME are very close for 

fingerprints images, but there are small differences for 

handwritten words images under the cases of no noise. The 

results of ME after adding Gaussian noise with standard 

deviations of   and   were also examined. Approximate ME 

values were obtained by the two methods although there was 

some noise in the test images. 

The relative error (RE) of HGEM to Otsu’s method, defined 

in Eq. (10), can be used to measure the closeness of the 

threshold values obtained by the two methods, where (1-ME) 

means the percentage of the correct classification of image 

pixels. As indicated in Table 1, the maximum RE with cases of 

no noise is 1.494% for handwritten words images. However, 

when Gaussian noise was added to the test images, the 

maximum RE is only 1.104% in the CEDAR database. 

Consequently, the relative errors of HGEM to Otsu’s method 

in all cases are less than 1.50%. 

 

(1 ) (1 )

1 1

Otsu TSMO Otsu TSMO

Otsu Otsu

ME ME ME ME
RE

ME ME

   
 

 
(10) 

 

Table 1. Comparisons of ME and RE with cases of no noise, 

=10, and =20 

Methods 
Handwritten words Fingerprints 

No 

noise 
=10 =20 

No 

noise 
=10 =20 

ME(Otsu) 0.0162 0.0079 0.0221 0.0298 0.0225 0.0442 

ME(HGEM) 0.0309 0.0163 0.0113 0.0295 0.0315 0.0444 

RE(%) 1.494 0.847 1.104 0.031 0.921 0.021 

 

3.3  Comparison of HGEM and Otsu’s method 

The corresponding FPGA circuits for the proposed HGEM 

method were designed based on the architecture of the 

threshold estimation unit shown in Fig. 16. This unit comprises 

the following three modules: histogram statistics, threshold 

searching, and threshold determination. The histogram 

statistics module is used to divide the number of gray levels 

into 16 counters (C0 to C15) as described earlier; it then 

outputs the resulting histogram to the threshold searching 

module. As indicated in Fig. 16, the threshold searching 

module consists of two sub-modules, namely, threshold 

search1 used to find max1_1 and max1_2, and threshold 

search2 used to find max2_1 and max2_2. Then, the threshold 

determination module determines th1 and th2 based on the 

proposed HGEM method (see Eqs. (5)–(8)). Finally, the 

threshold value can be evaluated as 16(th1+th2)/2 in this 

module. 

 

  
Figure 16. Architecture of the threshold estimation unit 

  

Some issues, such as latency in the design of the FPGA, should 

be considered carefully. Theoretically, when a 256256 

gray-level image is used, the width of the counters must be 16 

bits to avoid overflow. Therefore, 16-bit wide comparators are 

required to find the first two largest count values in the 

submodules: threshold search1 and search2. However, the 

latency of the synthesized circuit in the FPGA is very serious 

due to the larger number of bits, i.e., 16 bits, used in the 

comparators. To improve the latency of the threshold 

searching module, the number of bits was reduced to 10 in the 

comparators. By only comparing the results in higher bits of 

the counters and discarding lower bits with allowable losses in 

accuracy, the number of bits used in the comparator can be 

reduced from 16 to 10, which increases the performance of this 

system from 184.6 MHz to 193.9 MHz. 

The total cycles required for threshold estimation in the 

FPGA includes the time consumed by the three modules 

mentioned above, where the time required by the histogram 

statistics module highly depends on the input image size; for 

example, 65,536 cycles are needed to complete the histogram 

when the input image is 256256 pixels. Moreover, eight 
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cycles are needed for the threshold searching module to 

determine the index values corresponding to the first two 

largest count values for both regions; max1_1 and max1_2 for 

the left region, and max2_1 and max2_2 for the right region. 

Four cycles are required for the threshold determination 

module to determine th1 and th2, and to complete the 

calculation of the threshold value, 8(th1+th2). In this study, 

the threshold searching and determination modules were 

designed using state machines. Consequently, the total time 

needed by the threshold estimation unit for a 256256 image is 

65,536+8+4=65,548 cycles. 

4. Experimental results 

The proposed system architecture consists of the moving 

window generator, the three-stage Sobel pipeline unit, and the 

threshold estimation unit. The components were integrated 

and implemented into a chip system with a Xilinx Virtex-4 

(XC4VLX25) FPGA. The total execution time can be 

evaluated as the cycles consumed by the moving window 

generator (=65,536 cycles), the three-stage Sobel pipeline unit 

(=4 cycles), and the threshold estimation unit (=65,548 

cycles), a total of 65,536+4+65,548=131,088 cycles. The 

synthesized results of this FPGA chip system including the 

UART data transmission unit reveal that the required gate 

count is only 17,101, and that the operation speed can reach up 

to 193.9 MHz, which is equivalent to the processing rate of 

1,479 (=193.9MHz 106/131,088) frame/s for a 256 256 

image, as indicated in Tables 2 and 3. 

 

Table 2. Comparison of performance of Sobel-based edge 

detector on FPGA 

Architecture Image size Operation speed Frame/s 

Proposed system 256×256 193.9 MHz 1,479 

K. Benkrid, 2002[17] 256×256 75 MHz 104 

X. Li, 2003[19] 256×256 40 MHz 610 

R.L. Rosas, 2005[18] 640×480 13.2 MHz 43 

 

Table 3. List of synthesized resources for individual 

components on FPGA 

Module 

Slice 

 flip 

flops 

4 input 

 LUTs 

Occupied 

 slices 

BRAM/ 

FIFOs 

Speed 

(MHz) 

Gate 

Count 

UART 55 121 64 0 249.6 1,203 

Histogram statistic 257 49 146 0 324.9 5,846 

Threshold search 1/2 77 194 116 0 266.6 1,816 

Threshold segment 10 50 31 0 260.2 804 

Moving window 

generator 
140 189 131 2 237.9 2,382 

Sobel pipeline unit 51 71 44 0 238.2 1,305 

Total system 
995 

(4%) 

1,116 

(5%) 

930 

(8%) 

38 

(52%) 

193.9 

(%) 

17,101 

(%) 

Virtex-4XC4VLX25 21,504 21,504 10,752 72 500 - 

 

Table 2 compares the performance of the Sobel-based edge 

detectors implemented by [17],[18],[19] for some fixed image 

sizes. However, the edge detectors [17]-[19] were 

implemented on a pre-specified threshold value. The 

operational speed of the proposed architecture, i.e., 193.9 

MHz, is about 2.5 to 4.8 times greater than those of [17],[19] 

for 256256 images. The processing rate, i.e., 1,479 frame/s, 

far exceeds the requirement of a real time image processing 

system. This implies that highly efficient image processing can 

be achieved using the proposed architecture. 

Table 3 lists the synthesized resources of the FPGA chip 

system for individual components. As indicated in Table 3, the 

histogram statistics module, implemented using only 16 

counters with a width of 16 bits, consumes the most resources 

of the FPGA, with about 5,846 gates (about 34% of the total 

system), to complete a histogram of a gray-level image. That is 

why this work does not use 256 counters, corresponding to 256 

gray levels, to implement this module. Furthermore, since the 

function of this module is relatively simple, the operational 

speed, i.e., 324.9 MHz, is the highest among the modules. 

Although all components can perform individually with an 

operation speed higher than 235 MHz, the total speed of the 

integrated system is only 193.9 MHz when all components 

have been interconnected. Moreover, to readily access the 

image data, 38 blocks of RAMs were used in the FPGA chip 

system, where two of the blocks were used by the moving 

window generator, and the others were employed for 

temporarily storing the image data. 

Figure 17 shows the software used for interfacing a PC and 

the FPGA chip system, developed using Borland C++ Builder 

6.0. This software can be used to verify the correctness of the 

edge detection obtained by the proposed architecture. As 

indicated in Fig. 18, the edge detection of the image “camera 

man” by the software (Fig. 18(b)) and FPGA (Fig. 18(c)) is the 

same, implying that a highly accurate threshold value can be 

obtained using the proposed architecture. 

  
Figure 17. Developed software for threshold estimation by 

HGEM 

  

 
(a). Original image  (b). Software  (c). FPGA 

Figure 18. Comparison of edge detection by software and 

FPGA 

 

Figure 19 shows the placement and routing for all the 

components in the FPGA after floorplanning. As indicated in 
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Fig. 19(a), the components in FPGA can be arranged 

compactly by specifying the positions of CLBs (Configurable 

Logic Blocks) to reduce the required areas. The block RAMs, 

indicated by two rectangles with dashed lines (see Fig. 19(a)), 

was used to store the input and output images temporarily. The 

histogram statistics module accesses the block RAMs to 

acquire the image data and then groups it into 16 counters to 

complete the histogram of an input gray-level image. The 

placement of this module should be as close as possible to the 

block RAMs to save routing resources. However, since the 

synthesized logic of this module is relatively large, its 

placement may occupy the positions of some block RAMs, 

making this memory space unavailable for other modules. To 

reduce the number of occupied blocks of RAMs, the height of 

the floorplanning area of this module was shortened by area 

constraints, and the width was adjusted to cross over three 

CLB columns so that the input and output images could be 

completely stored in neighboring two columns of the block 

RAMs, greatly reducing the routing paths between this module 

and the block RAMs. Additionally, because the line buffers of 

the moving window generator need two blocks of RAMs, the 

placement of the moving window generator also needs to cross 

over two CLB columns to reduce routing paths. 

 

 
(a). Placement    (b). Routing 

Figure 19. Placement and routing in the FPGA after 

floorplanning 

5. Conclusion 

A fast and efficient algorithm called HGEM, which is based on 

the Gaussian distributions of a histogram, was developed to 

determine a threshold for a gray-level image of which value is 

close to that of Otsu’s method. The proposed method is simple 

and efficient for implementation on an FPGA, since it avoids 

the repetitious iterations and complex arithmetic operations, 

such as multiplication and division, when compared to the 

basic Otsu thresholding procedures. To use hardware resource 

more effectively, the block RAMs was used to implement the 

line buffers (FIFO A and B) of the moving window generator. 

The synthesized results indicate that the operation speed can 

be increased by 15.6%; the logic elements of the FPGA were 

reduced by 74.2%, when using the block RAMs to replace the 

shift registers. 

Misclassification error (ME) was used in the evaluations of 

the accuracy for the proposed method. The maximum ME for 

HGEM in all test cases with or without noise (=10 and =20) 

was only 0.044, which is very close to the value obtained by 

Otsu’s method. The relative errors (REs) were all less than 

1.50% for the test images, indicating that a comparable 

threshold can be obtained by HGEM when compared to Otsu’s 

method. Therefore, the proposed method is very efficient with 

an accuracy equivalent to that of Otsu’s method. 

The hardware architecture of the Sobel-based edge detector 

with an optimal threshold determined by HGEM comprises 

four major components: the UART transmission unit, the 

moving window generator, the three-stage Sobel pipeline unit, 

and the threshold estimation unit. The components were 

integrated and implemented into a single chip system with a 

Xilinx Virtex-4 (XC4VLX25) FPGA. The synthesized results 

reveal that the total required gates amount to 17,101, and that 

the total operation speed can run at up to 193.9 MHz, which is 

equivalent to a theoretical processing rate of 1,479 frame/s for 

256256 images. This result confirms that the proposed 

architecture on FPGA can easily achieve the requirements for 

a real-time image processing system. 
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