
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 177
Volume 1, Issue 4, December 2010

Automatic Threshold Selection Based on Histogram

Gaussian Estimation Method in FPGA

Deng-Yuan Huang
1
, Ta-Wei Lin

1
 and Wu-Chih Hu

2

1Department of Electrical Engineering, Dayeh University,

168 University Rd., Dacun, Changhua 515, Taiwan

2Departement of Computer Science and Information Engineering, National Penghu University of Science and Technology,

300 Liu-Ho Rd., Makung, Penghu 880, Taiwan

{kevin@mail.dyu.edu.tw, daweimailbox@gmail.com, wchu@npu.edu.tw}

Abstract: A fast and efficient algorithm called HGEM

(Histogram-based Gaussian Estimation Method) based on an FPGA

(Field Programmable Gate Array) is developed to automatically

determine a threshold value for a Sobel edge detector. In comparison

with Otsu’s method based on a discriminant criterion, the proposed

method is more efficient in computing performance. The proposed

method is also simple to be implemented on the FPGA since it avoids

the repetitious iterations and complex arithmetic operations in Otsu’s

thresholding procedures. The relative error (RE) of HGEM to Otsu’s

method is utilized to measure the closeness of the thresholds

obtained by the two methods. The relative error is less than 1.50% for

all the test images, indicating that the proposed method has the

approximately same accuracy as that of Otsu’s method. Timing

simulations show that the FPGA circuits can run at a speed of up to

193.9 MHz, which is equivalent to a theoretical frame rate of 1,479

frame/s for a gray-level image of 256×256. This result confirms that

the proposed hardware architecture can achieve the requirements for

a real-time image processing system.

Keywords: Otsu’s method; binary thresholding; image

segmentation; field programmable gate array (FPGA).

1. Introduction

Automatic thresholding is a very straightforward and effective

technique used in the fields of image processing, pattern

recognition and computer vision. However, it requires an

adequate threshold value to extract objects of interest from

their background, since objects in an image have their own

distinct gray-level distributions. Thresholding methods are

widely used in many application domains, such as human

action recognition [1], optical character recognition (OCR)

[2],[3], automatic defect inspection [4],[5], video change

detection [6]-[8], moving object segmentation [9]-[12], and

medical image diagnoses [13],[14]. As a fundamental task for

image preprocessing, many researchers pay much attention to

the method of how to determine appropriate thresholds.

These applications demand real-time performance and

hardware implementation, especially for an FPGA, is essential

to increase the computational efficiency of thresholding

procedures. Hence, the choice of a thresholding method for

implementation on an FPGA board is important. In binary

thresholding for image segmentation, Otsu’s method [15] is a

very popular global automatic thresholding technique; it

selects an optimum threshold by maximizing the

between-class variance in a gray-level image. However, the

basic Otsu thresholding computations involve repetitious

iterations of the zero- and first-order cumulative moments of a

gray-level histogram, which requires a great number of

complex arithmetic operations such as multiplications and

divisions. The heavy computational resource makes Otsu’s

method unsuitable for a high-speed low-cost implementation

in FPGA.

Otsu’s method is simple to be implemented in software, but

it is less efficient when implemented in FPGA circuits. Tian et

al. [16] introduced a binary logarithmic conversion unit (LCU)

to implement Otsu’s method by eliminating the complex

divisions and multiplications in the computations of

between-class variances. The hardware was synthesized with

Synplicity Synplify Pro 7.0.3 targeted at the Xilinx Virtex

XCV800 HQ240-4 FPGA device. The results for

implementations on the FPGA platform showed that their

method is 2.75 times faster because it occupies only 1/6
th

 of

the FPGA slices required by a direct implementation. The

introduction of an LCU can avoid the complex computations

of divisions and multiplications, but repetitious computations

are still required to search for the maximum between-class

variance to determine an optimum threshold.

To eliminate both the repetition and complex arithmetic

operations in the computations of between-class variance, we

present a fast algorithm called HGEM (Histogram-based

Gaussian Estimation Method), which is based on the Gaussian

distributions of a histogram to determine an optimal threshold

for gray-level images. The proposed method is relatively

simple and efficient for implementation on an FPGA platform

when compared to the basic Otsu thresholding procedures. We

also develop a Sobel-based edge detector in the FPGA circuits

as a target platform for the HGEM. To detect the presence of

an edge pixel in an image, an appropriate threshold value is

required to compare it with the magnitude of the Sobel

mailto:daweimailbox@gmail.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 178
Volume 1, Issue 4, December 2010

gradient. Therefore, HGEM can be used to choose the

optimum threshold for the Sobel-based edge detector.

Most algorithms for edge detection need to perform a

convolution with an image in the spatial domain using a

specific mask like a Sobel operator. Benkrid et al. [17]

proposed a general framework which is built on a library of

hardware skeletons for FPGA-based image processing. Two

methods, online arithmetic and 2’s complement LSBF (least

significant bit first) with bit serial transfer, were presented to

implement the Sobel-based edge detector on an FPGA board.

Time simulations revealed that for a 256 ×256 gray-level

image, the Sobel-based edge detector can run at a speed of 75

MHz, which leads to theoretical frame rates of 88 and 104

frame/s for online arithmetic and 2’s complement LSBF

methods, respectively. However, [17] did not explicitly

describe the determination of the threshold required to

establish the presence of an edge pixel. Other studies [18]-[20]

have also omitted this description.

Rosas et al. [18] utilized a SIMD (single instruction

multiple data) architecture based on an FPGA which was

connected to two external RAMs modules. One of the RAMs

modules was used to store the image captured by a CMOS

sensor, and the other was used to store the image processed by

the FPGA. In our study, instead of using external RAMs

modules, the proposed hardware architecture uses built-in

dual-port block RAMs to implement the HGEM algorithm

targeted at a Sobel-based edge detector because it can store

great amounts of data and access it quickly.

To evaluate the accuracy of the optimum threshold obtained

for an image, Sezgin and Sankur [21] employed the following

five methods to assess 40 existing thresholding algorithms:

misclassification error (ME), edge mismatch (EMM), region

non-uniformity (NU), relative foreground area error (RAE),

and modified Hausdorff distance (MHD). In this paper, the

method of ME is used to evaluate the accuracy of HGEM and

the Otsu method.

This paper presents an efficient framework for threshold

determination based on the FPGA using the HGEM algorithm.

The rest of this paper is organized as follows: Section 2 briefly

describes the proposed system architecture. Section 3 then

gives a detailed description of the proposed HGEM method.

The experimental results are discussed in Section 4, and

Section 5 contains the concluding remarks of this work.

2. System Architecture

The proposed architecture for an FPGA-based image

processing system is shown in Fig. 1. The hardware was

implemented using a Xilinx ISE 8.1i IDE (Integrated

Development Environment) tool on the ML401 Xilinx

Virtex-4 (XC4VLX25) FPGA based board. This system

consists of the following primary components: a data

transmission unit, an image segmentation unit, a moving

window generator, a three-stage Sobel pipeline unit, and a

threshold estimation unit. The data transmission unit is

designed to transfer original image pixels from a PC to the

FPGA through a UART (universal asynchronous receiver and

transmitter) module. To perform convolution, an input image

with m×n pixels has to be convoluted with a p×q mask. The

moving window generator is used to sequentially extract a p×

q window of neighboring pixels from the input image. The

three-stage Sobel pipeline unit is adopted to carry out the

convolution of the Sobel gradient operator with the window of

image pixels acquired by the moving window generator. The

threshold estimation unit is an implementation of the proposed

HGEM algorithm, which performs histogram statistics,

threshold search, and threshold determination. The image

segmentation unit is to binarize input image by a threshold that

is determine by the threshold estimation unit.

A threshold value is required for segmenting a gray-level

image. An algorithm called HGEM is proposed to replace the

Otsu’s method based on the feasibility of implementation on

the FPGA device. The proposed algorithm HGEM, as

implemented in the threshold estimation unit, involves the

computing procedures including histogram statistics,

threshold search, and threshold determination. As illustrated in

Fig. 1, when the convolution operation is complete, the

processed image (or output image) is stored in block RAMs

and then sent back to the PC through the UART module for

further verification. The details of the data transmission unit,

the moving window generator, and the three-stage Sobel

pipeline unit are described in the following sections.

Figure 1. System architecture for threshold determination

targeted at the Sobel edge detector

2.1 Data transmission unit

To verify the correctness of the proposed architecture shown

in Fig.1, the output image stored in block RAMs, which can be

transmitted to a PC by the UART module, is compared with

that calculated by software. The architecture of data

transmission unit is shown in Fig. 2. This unit primarily serves

the following two functions (1) to transmit the original image

from a PC to the FPGA, and (2) to send back the output image

from the FPGA to the PC.

The byte data of the image is sent by a PC through the

UART pin RXD using serial transmission to the UART_Rx

module on the FPGA, as shown in Fig. 2. When the UART_Rx

module has completely received one byte of image data, it

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 179
Volume 1, Issue 4, December 2010

sends the RXD_data[7:0] and RXD_ready signals.

RXD_ready is used to trigger the address controller to address

the memory locations of block RAMs A to store the image data

that is contained in register RXD_data[7:0]. When the image

data has been fully transmitted, the address controller stops the

action of writing the image data into block RAMs A to avoid

writing error. The image can then be processed in the FPGA

circuits.

When the output image has been produced, one can push the

transmit button with debouncing capability to trigger the

signal of TXD_start to initiate the transmission of the image

data from the UART_Tx module to a PC. When one byte of

the image data has been transmitted, the signal of TXD_busy is

pulled down to a low level to trigger the address controller to

acquire the next byte of the image data from block RAMs B

into register TXD_data[7:0]. Then, the UART_Tx module

sends the processed image data back to the PC until the total

image has been completely transmitted. With the aid of this

unit, the transmission of the original image and the verification

of the output image can be easily achieved.

Figure 2. Architecture of the data transmission unit

2.2 Moving window generator

To compute the Sobel gradient, a 3×3 (i.e., p=q=3) window of

neighboring pixels extracted from the input image is required

for convoluting with a Sobel gradient operator. This

neighborhood window then moves over the whole image until

an output has been produced for all pixels. Generally, it is not

practical to store the whole image in RAMs before starting

computations due to the limited CLBs (Configurable Logic

Blocks) in FPGA. A better way is to only store the image

pixels required to perform the current convolution operation.

Figure 3 shows the architecture of the moving window

generator which comprises nine flip-flops and two line buffers

(or FIFOs; first in first out). The line buffers (i.e., FIFO A and

B) and flip-flops are used to store one row of image data with a

dimension of n, with each grayscale pixel represented by 8

bits. Generally, when a p×q convolution mask is applied,

[(p-1)×n+q]×8 registers are required. Line buffers can be

implemented using either shift registers or block RAMs in

FPGA. Generally, when an FPGA has no built-in block

RAMs, the only way to implement the line buffer is to use shift

registers [17],[20],[22],[23], which usually consume a large

number of FPGA gates. For example, when a 3×3 convolution

window is applied to a 256×256 (i.e., m=n=256) image with

8-bit pixels, (2×256+3)×8=4,120 flip-flops are required. That

is about 19% (4,120/21,504*100%) of all the available

flip-flops in the Virtex-4 (XC4VLX25) FPGA used in this

case. Furthermore, if the size of the convolution mask or image

becomes larger, the required gate counts or CLBs of the FPGA

will increase accordingly. To reduce the consumption of

FPGA CLBs, [24] utilized block RAMs to implement the line

buffers.

This paper also adopts the block RAMs to implement the

line buffers using a framework similar to that used in [24].

Using block RAMs to implement the line buffers not only

reduces the consumption of FPGA gates, but also lowers the

required routing of logic elements. Less routing of logic

elements implies that a higher operation speed of the FPGA

circuits can be achieved. This is verified by Figs. 4 and 5.

Figure 3. Architecture of the moving window generator

The FPGA gate counts for block RAM-based and shift

register-based FIFOs under various image sizes are shown in

Fig. 4. The results show that the required gate count increases

from 4,000 to 38,000 when the image size grows from 32×32

to 512×512 pixels for the case of a shift register-based FIFO.

However, when block RAMs is used, the required gate count

remains approximately constant at about 2,000 with increasing

image size. Figure 5 shows the effects of image size on the

operational speed of the FPGA circuits. Generally, the total

speed decreases when the image size becomes larger for both

shift register-based and block RAM-based FIFOs. Sharp

declines of speed can be observed when the image size

increases from 128×128 to 512×512. In addition, the average

speed for a block RAM-based FIFO is much higher than that

of a shift register-based one. Figs. 4 and 5 show that the

operational speed can be increased by 15.6% and that the logic

elements of the FPGA can be reduced by 74.2% when block

RAMs is used to replace shift registers to implement the FIFOs

in the moving window generator.

Figure 4. Effect of image size on the gates consumed in FPGA

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 180
Volume 1, Issue 4, December 2010

Figure 5. Effect of image size on the operational speed of the

FPGA chip system

2.3 Three-stage Sobel pipeline unit

Many methods for edge detection have been implemented with

convolution masks, and most are derived from the differential

operators, which measure the rate of change in brightness of an

image. Generally, a large change in brightness in an image

over a short spatial distance (typically one pixel) reveals the

existence of an edge. The most popular convolution mask used

in edge detection is the Sobel gradient operator, which looks

for edges in both the horizontal and vertical directions and

then combines this information into a single metric, as shown

in Fig. 6. The convolution can be carried out with the Sobel

gradient operator as follows:

7 8 9 1 2 3(2) (2)xG w w w w w w (1)

3 6 9 1 4 72 2yG (w w w) (w w w) (2)

where Gx and Gy are called the “row mask” and the “column

mask,” respectively. Since both have the same computational

complexity in performing the convolution operation, this

paper only implements horizontal edge detection, i.e., Gx, to

avoid detecting redundant edge information.

Figure 6. Sobel masks used to compute gradients Gx and Gy

Figure 7 shows the architecture of the three-stage Sobel

pipeline unit. In this study, three pipelines are employed to

improve the performance of the system. First, stage-1

pipelining deals with the additions and multiplications of the

image window pixels with the Sobel gradient operator. In this

stage, four additions and two multiplications are required,

where multiplication is performed using one shift-left

operation rather than using a multiplier to save logic elements.

Stage-2 determines the absolute value for Gx, and stage-3

outputs an enhanced edge detection image. When synthesizing

individually, this unit can run at a speed of up to 238.2 MHz.

Figure 7. Architecture of the three-stage Sobel pipeline unit

3. Threshold selection algorithm

In an image processing system, the success of image

segmentation highly depends on the capabilities of the

thresholding method to determine an optimum threshold. Lee

et al. [25] adopted the histogram concavity technique to locate

the optimal threshold value. In their method, the slopes of all

the line segments are calculated from the starting gray level.

Then, the background peak, Bp, with the greatest slope can be

obtained. Similarly, the object peak, Op, can be secured

starting from the opposite direction. As a result, the optimal

threshold can be found somewhere between Bp and Op.

However, this method fails to find the optimal threshold for the

special case when Bp meets Op due to extremely high

histogram data in a gray level.

Some heuristic approaches have been presented to

determine the optimal threshold. El-Khamy et al. [26]

proposed a so called “Modified Fuzzy Sobel” method that uses

a fuzzy reasoning-based algorithm to detect the edges of an

image. They first divided an image into two fuzzy regions, i.e.,

the Fuzzy Smooth region and the Fuzzy Edge region, and then

constructed a difference histogram from the input image. The

four threshold values used to define the boundaries of the

image fuzzy region were used to build a membership function

to determine the optimal threshold.

The methods proposed by [25],[26] are relatively simple to

implement in software, but they are quite difficult to

implement in FPGA circuits due to the determination of

varying slopes for [25], and the calculation of the difference

histogram for [26]. To achieve much higher accuracy in

thresholding estimation, a lot of studies [27]-[29] have used

the entropic thresholding technique to find an optimal

threshold instead of adopting histogram shape-based methods.

However, this method needs to calculate the probability

distributions for the edge and non-edge pixels, making it

computationally expensive and hard to implement on an

FPGA. To balance the computational cost and thresholding

estimation accuracy, the present study proposes a

histogram-based Gaussian estimation method (HGEM), which

is not only easily implemented in FPGA circuits, but also

provides a more reasonable threshold value.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 181
Volume 1, Issue 4, December 2010

3.1 Histogram-based Gaussian estimation method

(HGEM)

HGEM is based on the analysis of the gray-level probability

density function (pdf) for an image[30]. When the histogram is

modeled as two different Gaussian functions, as shown in Fig.

8, with means and variances (1 , 2
1) and (2 , 2

2),

respectively, the histogram function becomes:

2 2

1 2

2 2
1 2

() ()

2 21 2

1 2

()
2 2

z z

P P
p z e e

 (3)

and

1 2 1P P (4)

where z denotes gray level values, and 1P and 2P are the

probabilities of occurrence of the two classes of pixels,

respectively. To find the optimal threshold value T in Fig. 8,

erroneous classifications, which assign a background pixel to

the object, and vice versa, should be minimized.

Figure 8. Graph of the probability density function (pdf) for

gray-level distribution

To greatly reduce the hardware resources required to

implement HGEM on the FPGA, we performed histogram

binning by employing wider bin widths. In this study, 16 bin

groups, which contain 16 gray levels in every group, are

employed to compute the histogram of gray levels to find the

optimal threshold. One may argue when the bin width is

beyond a certain limit, it may destroy the modes or the valleys

in between. However, if the bin width is constrained within a

reasonable range, the fine characteristics of the histogram in an

image can still be retained. Hence, the operation of “histogram

binning” greatly decreases the computational complexity and

significantly reduces the required logic elements in the FPGA.

Figure 9 shows the histogram of various bin groupings, i.e.,

16, 32, 64, and 256, for the test image “Lena”. As shown in this

figure, the fine characteristics (i.e., valleys in between) of the

histogram are similar for all the cases even when the widest bin

(i.e., Lean-16) is used. Consequently, the bin width adopted

falls into a reasonable range without missing the fine

characteristics of the histogram.

Figure 9. Histogram for various bin groupings for test image

“Lean”

To efficiently determine the optimal threshold T shown in Fig.

8, the 16 bin grouping is employed. The index value (0 to 15)

of the counter and count value of the histogram are used to

estimate the Gaussian distribution of an image. Based on the

index value and count value, the Gaussian distributions can be

categorized into four types. The details of the HGEM

algorithm used to determine the optimal threshold are

described below.

To complete the histogram of gray levels in an image, the

counters are first labeled C0 to C15. Hence, when the values of

gray levels are in the ranges of 0 to 15, 16 to 31, …, and 240 to

255, they will be grouped into counters C0, C1, …, and C15,

respectively. Then, the histogram can be modeled as two

distinct Gaussian functions, divided into the left region, i.e.,

C0 to C7, and the right region, i.e., C8 to C15. Next, we can

search for the index values, max1_1 and max1_2,

corresponding to the first two largest count values in the

direction from C7 to C0 in the left region. Similarly, the index

values, max2_1 and max2_2, can be obtained from C8 to C15

in the right region. Typical search results are shown in Fig. 10.

Two of the four index values, i.e., th1 and th2, can be selected

based on the type of Gaussian distribution to which the shape

of the image histogram belongs. Finally, the threshold value T

can be calculated as 16(th1+th2)/2. The HGEM algorithm for

finding th1 and th2 is described in the style of the C-language

for the following four cases.

 (max1_1 7 max 2_1 8)

 1 max1_1 2 max 2_1

if and

th and th

 (5)

 (max1_1 7 max 2_1 8)

 1 max1_ 2 2 max 2_ 2

if and

th and th

 (6)

 (max1_1 7 max 2 _1 8)

 1 max1_1

 ([max 2 _1] 0 max1_ 2 max1_1)

 2 max 2 _1

 2 1 (minimum)

if and

th

if C or

th

else

th

 (7)

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 182
Volume 1, Issue 4, December 2010

 (max1_1 7 max 2 _1 8)

 2 max 2 _1

 ([max1_1] 0 max 2 _ 2 max 2 _1)

 1 max1_1

 1 14 (maximum)

if and

th

if C or

th

else

th

 (8)

Figure 10. Typical distribution of the histogram with 16

counters

Equation (5) represents the first type of Gaussian distribution

shown in Fig. 11(a). If the two largest count values with

corresponding index values max1_1 and max2_1 are found on

the opposite side of the histogram, the possible Gaussian

distributions can be estimated around max1_1 and max2_1, as

indicated in Fig. 11(a). Hence, the index values th1 and th2 can

be selected as max1_1 and max2_1, respectively. Equation (6)

denotes the second type of Gaussian distribution with the first

two largest count values in the central region, i.e.,

corresponding to index values 7 and 8, as shown in Fig. 11(b)

and (c). Thus, one possible Gaussian distribution can be

estimated in the central region, but the other may be in the right

region, as shown in Fig. 11(b), or in the left region, as shown in

Fig. 11(c). Consequently, the index values of th1 and th2

should be determined as max1_2 and max2_2, respectively.

However, if we choose th1 as max1_1 and th2 as max2_1, the

threshold value, 16(th1+th2)/2, must be in the central region

of the histogram, implying that a greatly erroneous

classification will be raised.

(a). First type of Gaussian distribution

(b). Second type of Gaussian distribution in situation-1

(c). Second type of Gaussian distribution in situation-2

(d). Third type of Gaussian distribution in situation-1

(e). Third type of Gaussian distribution in situation-2

(f). Third type of Gaussian distribution in situation-3

Figure 11. Analysis of Histogram-based Gaussian Estimation

Method

The third type of Gaussian distribution is more complicated

than the first and second ones, as shown in Fig. 11(d)-(f). If the

first two largest count values are not next to each other in the

central region, say max1_17 but max2_1=8, one possible

Gaussian distribution can be modeled around max1_1, as

indicated in Fig. 11(d)-(f), and then th1 can be evaluated as

max1_1. However, when the count value C[max2_1] is not

equal to zero, the other possible Gaussian distribution can be

estimated around max2_1 (see Fig. 11(d)), and th2 should be

selected as max2_1. On the other hand, when the count value

C[max2_1] is zero, no gray levels are larger than 128, as

shown in Fig. 11(e) and (f). Hence, the other possible Gaussian

distribution can be modeled around max1_2. As a result, th2

can be chosen as max2_1 when max1_2>max1_1, or 1 when

max1_2<max1_1. As can be expected, the third type of

Gaussian distribution often occurs in a darker image. The

searching method of th1 and th2 (see Eq. (8)) for the fourth

type of Gaussian distribution is similar to that of the third type

but there are no gray levels smaller than 128. This always

happens in a brighter image. Since the searching method is

similar to that of the third type, its discussion is omitted here.

3.2 Comparison of HGEM and Otsu’s method

Sezgin and Sankur et al. [21] conducted an exhaustive survey

of 40 selected image thresholding methods. The results

confirm that the thresholding evaluation rank of 40 NDT

(nondestructive testing) images according to the overall

average quality score for Otsu’s method is relatively high, with

a rank of 6 and an average score of 0.318. This indicates that

Otsu’s method can provide a reasonable threshold value for

image segmentation. Here, the threshold estimations of

HGEM are compared with those of the Otsu method.

The testing images used in this study consists of natural

images (see Fig. 12(a)-(c)) and artificial images (see Fig.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 183
Volume 1, Issue 4, December 2010

12(d)-(g)), where Fig. 12(d) and (e) are adopted from [31]. To

evaluate the accuracy of threshold estimations by HGEM, an

artificial image is much better than a real-world one. The

threshold values estimated by HGEM for images Lena and

Peppers, as shown in Fig. 12(a) and (b), respectively, are very

close to those evaluated by Otsu’s method. For the image

Twins, as shown in Fig. 12(c), HGEM provides a more

reasonable threshold estimation, which is much closer to the

deeper valley than that of Otsu’s method, implying that HGEM

can find a satisfactory threshold value even for an image

histogram with a wide flat valley. A similar result was obtained

for Fig. 12(d). That is, HGEM provided a threshold value

exactly in the valley between the two peaks of Gaussian

distributions. However, the threshold value estimated by

Otsu’s method was shifted to the edge part of the right

Gaussian distribution. Furthermore, when three objects appear

in one image, as shown in Fig. 12(e), an appropriate threshold

value was obtained by both methods.

Images with different luminance levels were also examined

by HGEM to verify the robustness of the threshold estimations.

Images with low luminance, as shown in Fig. 12(f), and with

high luminance, as shown in Fig. 12(g), were tested using

HGEM and Otsu’s method. The results indicate that a

reasonable threshold value can be obtained using either

method, even for images with large variations in luminance.

However, HGEM is computationally efficient; it avoids both

repetitious iterations and complex arithmetic operations that

are required to compute the between-class variance when

using Otsu’s method.

(a). Lena

(b). Peppers

(c). Twins

(d). Two Objects

(e). Three Objects

(f). Low luminance

(g). High luminance

Figure 12. Testing images for threshold estimation

To visually compare the segmented results obtained by HGEM

and Otsu’s method, three 256256 test images (i.e., Lena,

Peppers, and Twins), with each pixel represented by 8 bits,

were used. The segmented images with their corresponding

thresholds are shown in Fig. 13. The figure shows that the

thresholds evaluated by HGEM are very close to those of

Otsu’s method, indicating that a closely visual perception

between them can be achieved.

Figure 13. Segmented images of binary thresholding for

HGEM and Otsu’s method

A comparison of accuracy using the ME method [21] for

HGEM and Otsu’s method was performed. Gray-level images

extracted from the CEDAR database of handwritten words

with 29 test images [32], and from the FVC2000 database of

fingerprints with 70 test images [33], were employed. Some

typical samples are shown in Figs. 14 and 15 with the

corresponding ground-truth images. The ground-truth images

can be obtained by visually determining the valley of the

histogram of the test images. The average results of ME for 29

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 184
Volume 1, Issue 4, December 2010

test images of the CEDAR database and 70 test images of the

FVC2000 database were used to evaluate the accuracy of

bi-level thresholding for the two methods.

Figure 14. Typical images in the CEDAR database of

handwritten words

Figure 15. Typical images in the FVC2000 database of

fingerprints

The index of ME is quite useful for quantifying the percentage

of background pixels wrongly assigned to the foreground, and

vice versa. For bi-level segmentation, ME can be simply

represented as

1
O T O T

O O

B B F F
ME

B F

 (9)

where BO and FO denote the background and foreground of the

original (ground-truth) image, respectively, and BT and FT

denote the background and foreground pixels in the test image,

respectively. Note that the value of ME varies from 0 for a

totally well classified image to 1 for a completely wrongly

binarized image.

Table 1 shows the results of ME of bi-level thresholds for

the two methods using the test images of handwritten words

taken from CEDAR and fingerprints taken from FVC2000. As

indicated in Table 1, the values of ME are very close for

fingerprints images, but there are small differences for

handwritten words images under the cases of no noise. The

results of ME after adding Gaussian noise with standard

deviations of and were also examined. Approximate ME

values were obtained by the two methods although there was

some noise in the test images.

The relative error (RE) of HGEM to Otsu’s method, defined

in Eq. (10), can be used to measure the closeness of the

threshold values obtained by the two methods, where (1-ME)

means the percentage of the correct classification of image

pixels. As indicated in Table 1, the maximum RE with cases of

no noise is 1.494% for handwritten words images. However,

when Gaussian noise was added to the test images, the

maximum RE is only 1.104% in the CEDAR database.

Consequently, the relative errors of HGEM to Otsu’s method

in all cases are less than 1.50%.

(1) (1)

1 1

Otsu TSMO Otsu TSMO

Otsu Otsu

ME ME ME ME
RE

ME ME

(10)

Table 1. Comparisons of ME and RE with cases of no noise,

=10, and =20

Methods
Handwritten words Fingerprints

No

noise
=10 =20

No

noise
=10 =20

ME(Otsu) 0.0162 0.0079 0.0221 0.0298 0.0225 0.0442

ME(HGEM) 0.0309 0.0163 0.0113 0.0295 0.0315 0.0444

RE(%) 1.494 0.847 1.104 0.031 0.921 0.021

3.3 Comparison of HGEM and Otsu’s method

The corresponding FPGA circuits for the proposed HGEM

method were designed based on the architecture of the

threshold estimation unit shown in Fig. 16. This unit comprises

the following three modules: histogram statistics, threshold

searching, and threshold determination. The histogram

statistics module is used to divide the number of gray levels

into 16 counters (C0 to C15) as described earlier; it then

outputs the resulting histogram to the threshold searching

module. As indicated in Fig. 16, the threshold searching

module consists of two sub-modules, namely, threshold

search1 used to find max1_1 and max1_2, and threshold

search2 used to find max2_1 and max2_2. Then, the threshold

determination module determines th1 and th2 based on the

proposed HGEM method (see Eqs. (5)–(8)). Finally, the

threshold value can be evaluated as 16(th1+th2)/2 in this

module.

Figure 16. Architecture of the threshold estimation unit

Some issues, such as latency in the design of the FPGA, should

be considered carefully. Theoretically, when a 256256

gray-level image is used, the width of the counters must be 16

bits to avoid overflow. Therefore, 16-bit wide comparators are

required to find the first two largest count values in the

submodules: threshold search1 and search2. However, the

latency of the synthesized circuit in the FPGA is very serious

due to the larger number of bits, i.e., 16 bits, used in the

comparators. To improve the latency of the threshold

searching module, the number of bits was reduced to 10 in the

comparators. By only comparing the results in higher bits of

the counters and discarding lower bits with allowable losses in

accuracy, the number of bits used in the comparator can be

reduced from 16 to 10, which increases the performance of this

system from 184.6 MHz to 193.9 MHz.

The total cycles required for threshold estimation in the

FPGA includes the time consumed by the three modules

mentioned above, where the time required by the histogram

statistics module highly depends on the input image size; for

example, 65,536 cycles are needed to complete the histogram

when the input image is 256256 pixels. Moreover, eight

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 185
Volume 1, Issue 4, December 2010

cycles are needed for the threshold searching module to

determine the index values corresponding to the first two

largest count values for both regions; max1_1 and max1_2 for

the left region, and max2_1 and max2_2 for the right region.

Four cycles are required for the threshold determination

module to determine th1 and th2, and to complete the

calculation of the threshold value, 8(th1+th2). In this study,

the threshold searching and determination modules were

designed using state machines. Consequently, the total time

needed by the threshold estimation unit for a 256256 image is

65,536+8+4=65,548 cycles.

4. Experimental results

The proposed system architecture consists of the moving

window generator, the three-stage Sobel pipeline unit, and the

threshold estimation unit. The components were integrated

and implemented into a chip system with a Xilinx Virtex-4

(XC4VLX25) FPGA. The total execution time can be

evaluated as the cycles consumed by the moving window

generator (=65,536 cycles), the three-stage Sobel pipeline unit

(=4 cycles), and the threshold estimation unit (=65,548

cycles), a total of 65,536+4+65,548=131,088 cycles. The

synthesized results of this FPGA chip system including the

UART data transmission unit reveal that the required gate

count is only 17,101, and that the operation speed can reach up

to 193.9 MHz, which is equivalent to the processing rate of

1,479 (=193.9MHz 106/131,088) frame/s for a 256 256

image, as indicated in Tables 2 and 3.

Table 2. Comparison of performance of Sobel-based edge

detector on FPGA

Architecture Image size Operation speed Frame/s

Proposed system 256×256 193.9 MHz 1,479

K. Benkrid, 2002[17] 256×256 75 MHz 104

X. Li, 2003[19] 256×256 40 MHz 610

R.L. Rosas, 2005[18] 640×480 13.2 MHz 43

Table 3. List of synthesized resources for individual

components on FPGA

Module

Slice

 flip

flops

4 input

 LUTs

Occupied

 slices

BRAM/

FIFOs

Speed

(MHz)

Gate

Count

UART 55 121 64 0 249.6 1,203

Histogram statistic 257 49 146 0 324.9 5,846

Threshold search 1/2 77 194 116 0 266.6 1,816

Threshold segment 10 50 31 0 260.2 804

Moving window

generator
140 189 131 2 237.9 2,382

Sobel pipeline unit 51 71 44 0 238.2 1,305

Total system
995

(4%)

1,116

(5%)

930

(8%)

38

(52%)

193.9

(%)

17,101

(%)

Virtex-4XC4VLX25 21,504 21,504 10,752 72 500 -

Table 2 compares the performance of the Sobel-based edge

detectors implemented by [17],[18],[19] for some fixed image

sizes. However, the edge detectors [17]-[19] were

implemented on a pre-specified threshold value. The

operational speed of the proposed architecture, i.e., 193.9

MHz, is about 2.5 to 4.8 times greater than those of [17],[19]

for 256256 images. The processing rate, i.e., 1,479 frame/s,

far exceeds the requirement of a real time image processing

system. This implies that highly efficient image processing can

be achieved using the proposed architecture.

Table 3 lists the synthesized resources of the FPGA chip

system for individual components. As indicated in Table 3, the

histogram statistics module, implemented using only 16

counters with a width of 16 bits, consumes the most resources

of the FPGA, with about 5,846 gates (about 34% of the total

system), to complete a histogram of a gray-level image. That is

why this work does not use 256 counters, corresponding to 256

gray levels, to implement this module. Furthermore, since the

function of this module is relatively simple, the operational

speed, i.e., 324.9 MHz, is the highest among the modules.

Although all components can perform individually with an

operation speed higher than 235 MHz, the total speed of the

integrated system is only 193.9 MHz when all components

have been interconnected. Moreover, to readily access the

image data, 38 blocks of RAMs were used in the FPGA chip

system, where two of the blocks were used by the moving

window generator, and the others were employed for

temporarily storing the image data.

Figure 17 shows the software used for interfacing a PC and

the FPGA chip system, developed using Borland C++ Builder

6.0. This software can be used to verify the correctness of the

edge detection obtained by the proposed architecture. As

indicated in Fig. 18, the edge detection of the image “camera

man” by the software (Fig. 18(b)) and FPGA (Fig. 18(c)) is the

same, implying that a highly accurate threshold value can be

obtained using the proposed architecture.

Figure 17. Developed software for threshold estimation by

HGEM

(a). Original image (b). Software (c). FPGA

Figure 18. Comparison of edge detection by software and

FPGA

Figure 19 shows the placement and routing for all the

components in the FPGA after floorplanning. As indicated in

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 186
Volume 1, Issue 4, December 2010

Fig. 19(a), the components in FPGA can be arranged

compactly by specifying the positions of CLBs (Configurable

Logic Blocks) to reduce the required areas. The block RAMs,

indicated by two rectangles with dashed lines (see Fig. 19(a)),

was used to store the input and output images temporarily. The

histogram statistics module accesses the block RAMs to

acquire the image data and then groups it into 16 counters to

complete the histogram of an input gray-level image. The

placement of this module should be as close as possible to the

block RAMs to save routing resources. However, since the

synthesized logic of this module is relatively large, its

placement may occupy the positions of some block RAMs,

making this memory space unavailable for other modules. To

reduce the number of occupied blocks of RAMs, the height of

the floorplanning area of this module was shortened by area

constraints, and the width was adjusted to cross over three

CLB columns so that the input and output images could be

completely stored in neighboring two columns of the block

RAMs, greatly reducing the routing paths between this module

and the block RAMs. Additionally, because the line buffers of

the moving window generator need two blocks of RAMs, the

placement of the moving window generator also needs to cross

over two CLB columns to reduce routing paths.

(a). Placement (b). Routing

Figure 19. Placement and routing in the FPGA after

floorplanning

5. Conclusion

A fast and efficient algorithm called HGEM, which is based on

the Gaussian distributions of a histogram, was developed to

determine a threshold for a gray-level image of which value is

close to that of Otsu’s method. The proposed method is simple

and efficient for implementation on an FPGA, since it avoids

the repetitious iterations and complex arithmetic operations,

such as multiplication and division, when compared to the

basic Otsu thresholding procedures. To use hardware resource

more effectively, the block RAMs was used to implement the

line buffers (FIFO A and B) of the moving window generator.

The synthesized results indicate that the operation speed can

be increased by 15.6%; the logic elements of the FPGA were

reduced by 74.2%, when using the block RAMs to replace the

shift registers.

Misclassification error (ME) was used in the evaluations of

the accuracy for the proposed method. The maximum ME for

HGEM in all test cases with or without noise (=10 and =20)

was only 0.044, which is very close to the value obtained by

Otsu’s method. The relative errors (REs) were all less than

1.50% for the test images, indicating that a comparable

threshold can be obtained by HGEM when compared to Otsu’s

method. Therefore, the proposed method is very efficient with

an accuracy equivalent to that of Otsu’s method.

The hardware architecture of the Sobel-based edge detector

with an optimal threshold determined by HGEM comprises

four major components: the UART transmission unit, the

moving window generator, the three-stage Sobel pipeline unit,

and the threshold estimation unit. The components were

integrated and implemented into a single chip system with a

Xilinx Virtex-4 (XC4VLX25) FPGA. The synthesized results

reveal that the total required gates amount to 17,101, and that

the total operation speed can run at up to 193.9 MHz, which is

equivalent to a theoretical processing rate of 1,479 frame/s for

256256 images. This result confirms that the proposed

architecture on FPGA can easily achieve the requirements for

a real-time image processing system.

References

[1] S. Arseneau, J.R. Cooperstock, “Real-Time Image

Segmentation for Action Recognition,” in: Proc. IEEE

Pacific Rim Conf. on Communications, Computers and

Signal Processing, Victoria, B.C., Canada, pp. 86-89,

1999.

[2] Hammouche K, Diaf M, Siarry P, “A multilevel automatic

thresholding method based on a genetic algorithm for a

fast image segmentation,” Comput. Vis. Image Und.,

Vol.109, No. 2, pp. 163-175, 2008.

[3] D.Y. Huang, C.H. Wang, “Optimal multi-level

thresholding using a two-stage Otsu optimization

approach,” Pattern Recogn. Lett., Vol. 30, No. 3, pp.

275-284, 2009.

[4] D. Aiteanu, D. Ristic, A. Graser, “Content based

threshold adaptation for image processing in industrial

application,” in: Int. Conf. Control and Automation,

Budapest, Hungary, pp. 1022-1027, 2005.

[5] H.F. Ng, “Automatic thresholding for defect detection,”

Pattern Recogn. Lett., Vol. 27, No. 14, pp. 1644-1649,

2006.

[6] G. Jing, D. Rajan, C.E. Siong, “Motion Detection with

Adaptive Background and Dynamic Thresholds,” in:

IEEE Int. Conf. Information, Communications and

Signal Processing, Bangkok, Thailand, pp. 41-45, 2005.

[7] E.P. Ong, B.J. Tye, W. S. Lin, M. Etoh, “An efficient

video object segmentation scheme,” in: IEEE Proc. Int.

Conf. Acoustics, Speech, and Signal Processing,

Orlando, Florida, USA, pp. 3361-3364, 2002.

[8] C. Su, A. Amer, “A Real-Time Adaptive Thresholding for

Video Change Detection,” in: IEEE Int. Conf. on Image

Processing(ICIP), Atlanta, Georgia, USA, pp. 157-160,

2006.

[9] A. Amer, “Memory-based spatio-temporal real-time

object segmentation for video surveillance,” in: Proc.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 187
Volume 1, Issue 4, December 2010

SPIE Int. Symposium on Electronic Imaging, Conf. on

Real-Time Imaging VII, Santa Clara, CA, USA, pp.

10-21, 2003.

[10] S.Y. Chien, Y.W. Huang, B.Y. Hsieh, S.Y. Ma, L.G.

Chen, “Fast video segmentation algorithm with shadow

cancellation, global motion compensation, and adaptive

threshold techniques,” IEEE Trans. Multimedia, Vol. 6,

No. 5, pp. 732-748, 2004.

[11] O. Sukmarg, K.R. Rao, “Fast object detection and

segmentation in MPEG compressed domain,” in: IEEE

Proc. TENCON, Kuala Lumpur, Malaysia, pp. 364-368,

2000.

[12] D. Zhang, G. Lu, “Segmentation of Moving Objects in

Image Sequence: A Review. Circuits Syst,” Signal

Process, Vol. 20, No. 2, pp. 143-183, 2001.

[13] M.S. Atkins, B.T. Mackiewich, “Fully Automatic

Segmentation of the Brain in MRI,” IEEE Trans. Med.

Imaging, Vol. 17, No. 1, pp. 98-107, 1998.

[14] P.K. Saha, J.K. Udupa, “Optimum Image Thresholding

via Class Uncertainty and Region Homogeneity,” IEEE

Trans. Pattern Anal. Mach. Intell., Vol. 23, No. 7, pp.

689-706, 2001.

[15] N. Otsu, “A threshold selection method from gray-level

histogram,” IEEE Trans. Syst. Man Cybern., Vol. 9, No.

1, pp. 62-66, 1979.

[16] H. Tian, S. K. Lam, T. Srikanthan, “Implementing Otsu’s

thresholding process approximation unit using area-time

efficient logarithmic,” in: Proc. Int. Symposium Circuits

and Systems (ISCAS), Bangkok, Thailand, pp. IV-21-

IV-24, 2003.

[17] K. Benkrid, D. Crookes, A. Benkrid, “Towards a general

framework for FPGA based image processing using

hardware skeletons,” Journal of Parallel Computing, Vol.

28, No.7-8, pp. 1141-1154, 2002.

[18] R.L. Rosas, A. de Luca, F.B. Santillan, “SIMD

architecture for image segmentation using Sobel

operators implemented in FPGA technology,” The 2nd

International Conference on Electrical and Electronics

Engineering (ICEEE) and XI Conference on Electrical

Engineering, Mexico City, Mexico, pp. 77-80, 2005.

[19] Xue Li, Rongchun Zhao, Qing Wang, “FPGA based Sobel

algorithm as vehicle edge detector in VCAS,” in: Proc.

IEEE International Conference on Neural Networks and

Signal Processing, Nanjing, China, pp. 1139-1142, 2003.

[20] P.Y. Hsiao, C.H. Chen, H. Wen, S.J. Chen, “Real-time

realisation of noise-immune gradient-based edge

detector,” IEEE Proceedings-Computers and Digital

Techniques. Vol. 153, No. 4, pp. 261-269, 2006.

[21] M. Sezgin, B. Sankur, “Survey over image thresholding

techniques and quantitative performance evaluation,” J.

Electron. Imaging, Vol. 13, No. 1, pp. 146-165, 2004.

[22] A. Benedetti, A. Prati, N. Scarabottolo, “Image

convolution on FPGAs: the implementation of a

multi-FPGA FIFO structure,” Proceedings of the 24th

Euromicro Conference, Vasteras, Sweden, pp. 123-130,

1998.

[23] B. Bosi, G. Bois, Y. Savaria, “Reconfigurable pipelined

2-D convolvers for fast digital signal processing,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 7, No.

3, pp. 299-308, 1999.

[24] V. Muthukumar, D.V. Rao, “Image processing algorithms

on reconfigurable architecture using HandelC,”

Proceedings of the Euromicro Symposium on Digital

System Design, Rennes, France, pp. 218-226, 2004.

[25] C.K. Lee, F.W. Choy, H.C. Lam, “Real-time thresholding

using histogram concavity,” Proceedings of the IEEE

International Symposium on Industrial Electronics, Xian,

China, pp. 500-503, 1992.

[26] S.E. El-Khamy, M. Lotfy, N. El-Yamany, “A modified

Fuzzy Sobel edge detector,” 7th National Radio Science

Conference, Minufiya University, Egypt, pp. C32 1-9,

2000.

[27] Jianping Fan, Walid G. Aref, Mohand-Said Hacid,

Ahmed K. Elmagarmid, “An improved automatic

isotropic color edge detection technique,” Pattern

Recogn. Lett., Vol. 22, No. 13, pp. 1419-1429, 2001.

[28] C.H. Li, P.K.S. Tam, “An iterative algorithm for

minimum cross-entropy thresholding,” Pattern Recogn.

Lett., Vol. 19, No. 8, pp. 771-776, 1998.

[29] Shu Yang, Ying Han, Cai-Rong Wang, Xiao-Wei Wang,

“Fast selecting threshold algorithm based on

one-dimensional entropy,” Proceedings of the Fourth

International Conference on Machine Learning and

Cybernetics, Guangzhou, China, pp. 4554-4557, 2005.

[30] R.C. Gonzalez and R.E. Woods, Digital image

processing, 2nd edition, Prentice Hall, Upper Saddle

River, New Jersey, 2002.

[31] URL:

http://www.csse.monash.edu.au/hons/projects/2002/Lau

ra.Frost/index.html

[32] N.S. Sargur, Center of Excellence for Document Analysis

and Recognition (CEDAR), 1991. Available from:<

http://www.cedar.buffalo.edu>

[33] D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, FVC2000

Fingerprint Database, 2000. Available from:

http://bias.csr.unibo.it/fvc2000/default.asp

Author Biographies

Deng-Yuan Huang received his Ph.D. degree in Aeronautic and Astronautic

Engineering from National Cheng Kung University, Tainan, Taiwan, in 1994.

He was with the steel and alumina R&D department at CSC Inc. in Taiwan for

several years as an associate scientist specializing in process control in

steel-making. He joined the Department of Electrical Engineering at Dayeh

University in 2002 and is currently an assistant professor. He has published

over 40 papers in journals and conference proceedings since 2002. His major

research interests include FPGA chip design, image processing, pattern

recognition, and computer vision.

Da-Wei Lin received his M.S. degree in computer science and information

engineering in 2009 from Dayeh University, Changhua, Taiwan. Currently,

he is working toward the Ph.D. degree in electrical engineering at the same

university. His current research interests include image processing and

computer vision.

Wu-Chih Hu received his Ph.D. degree in electrical engineering from the

National Taiwan University of Science and Technology, Taipei, Taiwan, in

1998. From 1998, he worked at the National Penghu University of Science

and Technology for 12 years. He is currently an associate professor in the

Department of Computer Science and Information Engineering. He has

published more than 70 papers in journals and conference proceedings since

1998. His current research interests include computer vision, image

processing, pattern recognition, digital watermarking, visual surveillance,

and video processing.

http://bias.csr.unibo.it/fvc2000/default.asp

